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Abstract: A framework and analysis for a 
distributed sensor network based surveillance 
system is presented here. In a previous effort [1] 
we have presented methodologies for 
coordination and decision-making amongst 
sensors for tracking targets while in [2] we 
presented the results of endowing the sensor 
network with autonomy.  Sensors monitor targets 
that crisscross a rectangular surveillance zone. 
When a sensor pursuits a target it leaves areas 
unguarded through which other targets can get 
past undetected. In this paper we presents a 
methodology that computes the tracking time for 
a sensor that guarantee detection of a required 
fraction of the targets expected to crisscross its 
home area to an arbitrary probabilistic threshold. 
The home area of the sensor is the area guarded 
by it when it is stationed at its home position, its 
default position when it is not in pursuit of a 
target. Simulations are presented that 
corroborate with the probabilistic model 
developed and hence vindicate its correctness. A 
framework for extending the probabilistic model 
to a system where multiple sensors guard the 
same area is also presented. 
 
1. Introduction 
 
This paper describes a methodology that 
guarantees probabilistic completeness for sensors 
that track targets in a multi-sensor setting. Each 
sensor guards in its default stationary state an area 
called the home area of the sensor. For a sensor 

js , its home area is denoted by jH .  The robots 
perform surveillance over a rectangular (square) 
surveillance zone. The surveillance zone is 
divided into number of square shaped cells as 
shown in figure 1 for the sake of modeling. The 
figure shows the sensors placed in their home 
positions. The radius of vision of the sensor 
equals the length of the diagonal of the cell. 
However the sensor only considers those targets 
that lie within its four neighboring cells as targets 

within its field of vision. This area representing 
its field of vision in its home position is also 
called as the home area of that sensor for the 
remaining of this paper. The home area of each 
sensor is depicted by thick squares. The 
simulation environment used for testing our 
strategies has been developed through Borland’s 
JBuilder IDE on the Java platform.  

 
A sensor allocates itself to one of the targets 
within its field of vision through a resource 
allocation process modeled through fuzzy rules 
[1]. The sensor further decides if it would monitor 
the target by remaining stationary or by pursuing 
(tracking) it. When a sensor tracks a target it 
leaves areas in its home position unguarded. The 
tracking time for a sensor js , denoted by jt  
represents the time for which the target would be 
away from its home position jH . The tracking 
time can be modulated based on the fraction of 
the number of targets that a sensor is expected to 
detect within a probabilistic threshold. If TN̂  
denote the number of targets expected to 

Figure 1: The rectangular surveillance zone with
sensors depicted as circles ensconced in their home
positions. The home area of each sensor is denoted
by thick squares 



crisscross jH  within a temporal window Γ and 

f be the lower bound on the fraction of the 

number of targets, ΓN̂ , to be detected and Ω  
represent the threshold the paper presents a 
framework for computing ( )ΩΓ= ,ˆ,, Tj Nfgt . 
Here g  is a function that guarantees that at-least 

a fraction f of the targets, ΓN , are detected to a 
probabilistic guarantee of Ω . In other words 

( ) Ω≥⋅≥ ΓNfnPg ˆ: , where P  is the 
probability computation over the random variable 
n that denotes the number of targets detected.  
 
The rest of the paper is organized as follows. 
Section 2 presents the current work in the context 
of similar works found in the literature. Section 3 
presents the formulation of the methodology and 
section 4 depicts the efficacy of the methodology 
in simulations. Section 5 extends the formulation 
to an environment where multiple sensors are 
placed with the responsibility of guarding the 
same home area. Section 6 concludes and 
provides further scope of this work. 
 
2. Background Review 

 
The problem of multi sensor surveillance involves 
detection of multiple intrusions and/or tracking 
through coordination between the sensors. 
Detection and target tracking has been researched 
from multiple viewpoints. Some efforts have 
focused on the problem of identifying targets 
from a given set of data through particle filters [3, 
and probabilistic methods [4]. The problem of 
data association or assigning sensor 
measurements to the corresponding targets were 
tackled by Joint Probabilistic Data Association 
Filters by the same researchers such as in [4]. 
Kluge and others [5] use dynamic timestamps for 
tracking multiple targets. Krishna and Kalra [6] 
presented clustering based approaches for target 
detection and further extended it to tracking and 
avoidance in [7]. The focus of these approaches 
has been on building reliable estimators and 
trackers. They do not use distributed sensors and 
are not directly useful for the problem of large 
area surveillance. 
 
In the context of distributed task allocation and 
sensor coordination Parker [8] proposed a scheme 
for delegating and withdrawing robots to and 
from targets through the ALLIANCE architecture. 

The protocol for allocation was one based on 
“impatience” of the robot towards a target while 
the withdrawal was based on “acquiescence”. 
Jung and Sukhatme [9] present a strategy for 
tracking multiple intruders through a distributed 
mobile sensor network. Lesser’s group have made 
significant advances to the area of distributed 
sensor networks [10] and sensor management 
[11]. In [9] robots are distributed across a region 
using density estimates in a manner that facilitates 
maximal tracking of targets in that region. The 
decision for a robot to move to another region or 
to stay in its current region is based on certain 
heuristics. The authors of this paper present their 
scheme for resource allocation and coordination 
in a distributed sensor system through a set of 
fuzzy rules in [1] and further analyze the behavior 
of system by varying the autonomy of the sensors 
in [2]. 
 
In none of the above efforts is a strategy for 
guaranteeing some form of completeness is 
presented. This paper is unique from other efforts 
in multi-sensor systems in that it offers a tracking 
strategy for sensors that modulates their tracking 
time such that a required number of targets are 
detected within probabilistic guarantees. The 
authors in [12] present a framework that provides 
for meeting a targeted search time within 
probabilistic guarantees for a cooperated UAV 
search. However the computations and the basis 
for their framework is disparate from this effort 
and is presented for a different application and 
motivation. 
 
3. The Methodology 
 
Targets are modeled percolating in a Poisson 
fashion at the rate λ through each cell, which has 
one of its edges on the boundary or the perimeter 
of the surveillance area. For a surveillance zone 
such as in figure 1 consisting of six cells along 
each side of the perimeter, the rate of entry is 
λ6 . λ is fixed at 1.0 for all the examples 

discussed in this paper. Then the apparent rate at 
which each sensor would see a target, SJλ  
provided it is stationary is given by the following 
approximation: 
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λλ , where, kθ  is the angle 

subtended from the point where the target enters 
the boundary at the home position of sensor sj . 



Since the entry points of the arriving targets are 
not known a-priori, kθ  is computed assuming 
that the target infiltrates at the midpoint of the cell 
edge that coincides with the perimeter of the 
zone. In the figure below (figure 2) the targets are 
assumed to enter at points p1, p2, p3, … along the 
perimeter of the surveillance zone. For the sensor 
centered at ‘b’, the angle subtended by the target 
entering at p4 is shown marked θ . This angle 
covers the span of all the targets that will cross 
the region of surveillance of the sensor at ‘b’ by 
targets entering at p4. The total span of the angle 
for a target entering at all those points is 
π radians or in other words all targets that enter 
the surveillance zone have to necessarily be 
within a span of π radians from the point of entry 
for them to be within the surveillance zone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let jt be the time for which a sensor sj is away 
from its home position in pursuit of a target as 
mentioned in section 1. We compute the apparent 
time aT  (the time for which a target that would 
have been in the field of vision of sj had sj  been 
stationary at its home position perceives sj  to be 
away) as: 
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Here, κ  is the fraction of the home area left 
unguarded by sj as it moves away from its home. 

The upper limit of the integral κT denotes the 
time at which the sensor leaves its original area 
completely unguarded. If escT  represents the 
average time for which a target stays in the home 
area of a sensor, the probability that a target is 
detected by a sensor is given by: 

a

esc

T
T

p = .     (2) 

 
Let n  be the random variable denoting the 
number of detections made over a temporal 
window Γ as before. The probability of detecting 
exactly k  of the ΓN  targets expected to arrive in 
Γ  is given by the familiar binomial distribution: 
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Here X  is a Poisson random variable that 
measures the number of targets arriving. The 
resultant probability of detecting k  such targets 
then becomes 
( ) ( ) ( )ΓΓ =⋅==== NXPNXknPknP ˆˆ

It can be shown that the above resultant 
probability once again has a poisson distribution 
with parameter pSJλ . Hence the probability of 

detecting k  targets has the representation 
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λλ−==   (3).  

The tracking time jt  is eventually computed by 
making use of equations (1), (2) and (3) and that 
which would satisfy the following guarantee 
condition: 
 
( ) Ω≥⋅≥= tNfknP ˆ    (4) 

 
Since double precision arithmetic does not allow 
computation of factorials beyond 20 the normal 
approximation to poisson distribution is used in 
our computations.  
 
4. Simulation Results 
 
The first objective is to evaluate empirically the 
validity of equation (2) that ascertains the 
probability of detecting a target by a sensor while 
it is in motion. For this purpose a single cell 
environment with one sensor such as in figure 4 is 

Figure 2: Targets are modeled as entering at
locations p1, p2, …, p4 at the midpoints of the cell
edges that coincides with the perimeter of the zone. 



considered. Targets are introduced in poisson 
fashion at the midpoints of the four boundaries of 
the cell. The sensor’s home position is at the 
center of the cell. The wandering time jt  is 

calculated for a given value of Ω  and f . The 

sensor is away from its home position for jt units. 
The sensor does not track a particular target. It is 
merely away from its home position. The number 
of targets that crisscrossed the cell during this 
time interval and the number of those detected 
were recorded.  
 
The results are tabulated in table 1. The first 
column represents the desired fraction of the 
targets that need to be detected and the second the 
minimum probabilistic threshold of detecting the 
fraction. The third column is the actual fraction of 
the targets detected averaged over twenty runs. 
The fourth column signifies the relative frequency 
of times a fraction greater than or equal to the 
desired fraction was detected. The fourth column 
is then a means of evaluating whether the desired 
probabilistic threshold was obtained. If the 

desired fraction to be obtained is 6.0  and 
thirteen times out of twenty a fraction more than 

6.0  was detected, the entry in the last column of 
the table is 65.0  that signifies the required 
performance was met.  It is seen that the average 
obtained fraction is above the desired fraction 
whenever the minimum probabilistic threshold is 
high indicating that the desired fraction was 
detected in most of the runs as entailed by the 
threshold. The average fraction obtained is lesser 
than the desired fraction when the desired 
probabilistic threshold is low. This is indeed 
expected as a low desired threshold indicates that 
the sensor is entailed to detect the desired fraction 
of targets only in a few of those twenty runs. The 
relative frequencies in the fourth column also do 
not fall significantly below the desired minimum 

probabilistic threshold in any of the runs. That the 
relative frequency is within %105 − of the 
desired threshold in all the runs validates the 
probability definition of equation (2) and the 
computation of apparent time in equation (1). 
 
In simulations escT  is computed as the average of 
the minimum and maximum a target is within the 
home area of a sensor. The minimum time is the 
time taken by the target to traverse half the edge 
of a cell. The maximum time is the time taken to 
traverse from midpoint of a side to the farthest 
opposite vertex of the cell. Similarly κT  is the 
average of the minimum and maximum time 
taken by the sensor to result in its home area 
becoming completely unguarded. The details of 
computing κT  are omitted here for brevity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Tabulation of the results obtained for the 
environment of figure 4 for different desired fraction 
and threshold values. 
 
The framework developed in section 2 is now 
tested for an environment shown in figure 1 with 
multiple sensors. Each sensor tracks targets such 
that the probabilistic guarantee is maintained with 
respect to its home area. The overall quality of 
track (QoT) at the end of a simulation interval Γ  
is defined by: 
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Here ΓN  is the actual number of targets that 
crossed the surveillance zone in Γ . The 

Desired 
minimum 
fraction 
( f ) 

Desired 
minimum 
probabilistic 
threshold 
(Ω )  

Obtained 
average 
fraction 
(20 runs) 

Obtained 
relative 
frequency 
(20 runs) 

0.9 0.9 0.91 0.95 
0.9 0.1 0.23 0.05 
0.6 0.9 0.73 0.85 
0.6 0.1 0.38 0.2 
0.4 0.6 0.42 0.65 
0.4 0.4 0.32 0.3 
0.1 0.9 0.28 1 
0.1 0.1 0.08 0.2 

Figure 4: A single cell environment used for
validating the definitions of equations (2) and (1).
The bigger circle denotes the sensor and the
smaller circles the crisscrossing targets introduced
in poisson fashion. 



numerator id  indicates the number of sensors 
that detected the target i  in Γ  while the 
denominator, ic  denotes the number of sensor 
home areas that the target i had got past in Γ . 
Essentially QoT is an average measure on 
whether a target that crossed the home area of a 
sensor was detected by that sensor with the 
difference that the QoT would also reflect cases of 
targets that are detected by sensors whose home 
area it did not cross elsewhere in the surveillance 
zone. In the summation of (5) if the fraction 

i

i

c
d

exceeds unity it is clipped to unity. This is 

done since a fraction greater than unity tends to 
offset for fractions less than unity and does not 
reflect those cases. A stricter definition of QoT 
that specifically captures the number of targets 
missed by a sensor that crossed its home area is 

given by: ∑
=

=
SN

j cj

dj

S n
n

N
QoT

1

1
  (6). 

Here SN  denotes the total number of sensors in 

the environment, djn  denotes the number of 
targets detected by the sensor among those that 
had visited its home area jH , while cjn  is the 

number of targets that had been through jH . 

Thus 
c

d

n
n

 represents the fraction of the targets 

that entered a sensor’s jH  and were detected by 
it and can never exceed unity. However we found 
that at the end of the simulation interval the 
values as computed by (5) and (6) vary only 
marginally. Hence in this paper the results of QoT 
are those computed as in (5). 
 
In the simulations that follow a sensor leaves its 
environment in pursuit of a target. Sensors can 
reallocate themselves to other targets during the 
course of a track as dictated by the resource 
allocation strategy. The time jt  for a sensor is 
updated after every fixed number of samples 
based on the fraction of the targets that were 
detected thus far and the fraction that need to be 
detected in the remaining time window to meet 
the objective of (4).  
 
Figure 5 shows a snapshot of a simulation run. 
The bigger circles represent the sensors and the 

smaller circles the targets. The dashed rectangles 
enclosing the sensor and target identify the 
sensor-target pair (the target to which the sensor 
has allocated itself to). It is to be noted while a 
sensor tracks a target it also detects all other 
targets within its field of vision. Currently the 
problems of data association and target occlusion 
are not considered.  
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 Analysis: 
 
Figure 5a shows two graphs that plot rf , the 

fraction remaining and wander time, jt , along the 
y-axis. In both the graphs the abscissa denotes the 
time in samples. Sampling measurements on rf , 

jt  are done once in every ten cycles of a 
simulation run. The total number of simulation 
cycles is 150 or in other words 150=Γ in these 
simulations. Each cycle is repeated every 500ms. 
The graphs cover the entire simulation run of 150 
cycles or 15 samples of measurements. The plot 
of figure 5b depicts QoT on y-axis and sample 
time on x. Both graphs 5a and 5b are for a 
simulation run with parameter 75.0,8.0 =Ω=f . 
The graphs of figure 5a are for one of the sensors 
of figure 5 only the graph of 5b depicts QoT  of 
the entire system. Graphs in figure 5c and 5d have 
the same connotations as in figures 5a and 5b 
except that they are for parameters 

3.0,8.0 =Ω=f . The horizontal dashed line in 
the graph of 5b and 5d indicate the desired 

Figure 5: A snapshot of a simulation run. The dotted
rectangles enclosing a sensor-target pair indicate the
target to which that sensor is currently allocated to.
Sensors are shown by larger circles while targets are
depicted smaller 



fraction of target fraction of targets, f , expected 
to be detected at the end of the simulation. Since 
QoT as defined in (6) computes the fraction of 
targets detected averaged across all the sensors in 
the system, the horizontal line serves as an 
indicator if the QoT  was achieved or not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For 75.0=Ω the track time is modulated such 
that the desired fraction f averaged over all 
sensors is detected at the end of a simulation run 
for majority of such runs. Figure 5b corresponds 
to one such run where the track quality at the end 
of the simulation is 0.85 and is above the 
expected criterion of 0.8 and lies above the 
horizontal. Figure 5d corresponds where the 
QoT at the end of the simulation does not achieve the 
desired fraction. This is expected for a run with 

3.0=Ω where most of the runs are not required 
to detect a fraction greater than 0.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a marginal increase in rf  in the top plot of 
figure 5a the corresponding decrease in jt is 
steeper in figure 5a when compared with figure 
5c. The decrease in wander time jt  as rf  is less 

steep in 5c than in figure 5a. For a given f the 
variations in jt  are due to the variations in Ω . A 
higher Ω  entails that the sensor cannot move too 
far away from its home due to lower values of jt . 

As the sensor moves away from its home and 
misses targets the required remaining fraction to 
be detected rf  may tend to increase. In such a 
case the decrease in wander time also tends to be 
steeper for a similar increase in rf  for a higher 

Figure 5a: The top graph shows rf plotted against

sample time while the bottom graph is a plot of jt
against samples. The plots are for a simulation
such as in figure 5 run with 75.0,8.0 =Ω=f  

Figure 5b: A plot of track quality QoT . The dashed
horizontal line denotes the desired fraction of the
total targets that need to be detected.  

Figure 5c: Graph same as figure 5a for
parameters 3.0,8.0 =Ω=f  

Figure 5d: Graph with same connotations as
figure 5b for parameters 3.0,8.0 =Ω=f . At
the end of simulation time the track quality is
below the horizontal line indicating that
performance criterion was not met 



Ω . A steeper increase translates as quicker 
returns to home by the sensor to detect more 
targets. 
 
 
6 Extension to Multi-sensor 
Surveillance 
 
The benefits of having more than one sensor 
guard the same home area is now considered. For 
example let each of the home area in figure 1 
(shown by thick squares) be guarded by 3 sensors. 
One such area is shown in figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be shown that κT , the time taken by the 
sensor to leave the area completely unguarded is 
the same on an average for all the three sensors. 
Let the sensors be labeled as A, B and C. The 
probability that sensor A detects a target is 
denoted as Ap  and has the same form as (2). 
Similarly the individual probabilities of detection 
for sensors B and C are denoted as Bp  and Cp . 

Since κT  and hence appT  are the same for the 

three sensors CBA ppp == . The probability 
that at-least one of the sensors detect a target is 
given by CBA pppp UU= .  Determining p  
from equations (3) and (4) and along with the 
condition CBA ppp ==  leads to the following 
cubic in the individual probability of a sensor: 

033 23 =−+− pppp AAA    (7). 
The solution to the cubic solves the individual 
probability of a sensor detecting a target. 
 
Figure 7a shows two graphs. The top graph 
depicts the individual probability of a sensor 

detecting a target for a fixed Ω  (here 0.7) and 
varying f .  The lower graph plots jt  versus 

f for a constant Ω  (here 0.7). Each of these 
graphs shows two plots. The plot with a dashed 
line corresponds to the case where a single sensor 
guards an area. The plot with solid line 
corresponds to the case where multiple sensors 
guard an area. The graphs indicate that the 
individual probability of detection is consistently 
lower when multiple sensors guard an area than a 
single sensor guarding and the wander time is 
correspondingly high for a multi-sensor case. 
Hence a sensor can wander away from its home 
area for a longer duration when if there are more 
than one guarding its home area. In [2] we have 
shown longer tracking time enhances 
performance criteria based on median and mean 
number of detections of targets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7 Conclusions: 
 
A framework that provides for probabilistic 
guarantees for a multi-sensor based multi-target 
tracking system is provided here. Sensors 
modulate their tracking time based on the desired 
fraction of targets that need to be detected and the 
minimum probabilistic threshold of detection. 
Simulation results corroborate the efficacy of the 
formulation of the scheme for probabilistic 
guarantees. Extension of the scheme to multiple 
sensors guarding the same area enables longer 
tracking time for a sensor and hence better 

Figure: An area guarded by three sensors, one
at the center and two at the corners 

Figure 7a: Plots of individual probability and
wander time against varying values of desired
fraction f . Solid lines are plots corresponding to
a single sensor while dashed lines correspond to
multi sensor case



performance based on mean and median number 
of detections.  
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